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Abstract 
This study assesses the suitability of aviation accident autopsy samples as RNA sequencing input 
and for detecting gene expression differences between THC-positive and THC-negative samples. 
Postmortem brain, lung, muscle, and blood samples were collected from 57 aviation accident 
fatalities and comparisons were made between each tissue based on the presence or absence of 
THC or its primary or secondary metabolites (28 positive, 29 negative). RNA was extracted, and 
global transcriptional analysis was performed using total RNA-Seq. Twenty-two genes in lung 
(18 of which had Entrez annotation data) and four in muscle showed significant differential gene 
expression between THC-positive and THC-negative samples. It is possible that the observed 
expression patterns between the THC-positive and THC-negative groups were induced by 
smoking and not by THC, as many of the observed genes were also reported in the literature to 
change in response to smoking. Cannabis use is often accompanied by other substance use, and 
evidence of co-use was observed among some subjects. Therefore we cannot state conclusively 
that the observed differences between the THC-positive and THC-negative groups were due 
solely to THC consumption, only that significant differences exist when the subject groups are so 
segregated. Regardless, this study is the first of its kind in reporting RNA-Seq data from 
postmortem tissues collected from aviation accident victims and that said data are of sufficient 
quality to derive significant differences between subject groups.  
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1. Introduction 
The National Transportation Safety Board (NTSB) is tasked by 49 U.S.C § 1111(g) 

(2021) to “investigate and report on accidents involving...aviation,” the United States 
Department of Transportation order 1100.1C (3)(C)(2)(c)(2021) directs the Federal Aviation 
Administration’s (FAA) Office of Aviation Safety to “investigate […] aircraft accidents and 
incidents [and] support […] NTSB accident and incident investigations,” and 49 U.S.C. § 
44507(a)(1-5) (2021) authorizes the FAA Civil Aerospace Medical Institute (CAMI) to “conduct 
civil aeromedical research.” Under these directives, the FAA/CAMI Functional Genomics 
(GEN) team performs research to identify molecular biomarkers for use as novel tools for 
aviation accident investigation. In contrast, the FAA/CAMI Forensic Toxicology (TOX) team 
performs toxicological analysis on specimens collected postmortem from aviation accident 
victims to contribute to the determination of accident causation. Of particular interest is the use 
of delta-9-tetrahydrocannabinol (delta-9-THC), the main psychoactive compound found in 
cannabis, by pilots, the use of which “make[s] [a pilot] unqualified to hold an FAA-issued 
medical certificate” (FAA, 2016). 

The 2020 National Survey on Drug Use and Health reports that, for individuals aged 12 
or older, past-year cannabis use increased from 11.0% in 2002 to 17.5% in 2019 (Substance 
Abuse and Mental Health Services Administration, 2021). For individuals aged 18 to 25, past-
year cannabis use increased from 29.8% in 2002 to 35.4% in 2019, and for individuals aged 26 
or older, past-year cannabis use increased from 7.0% to 15.2% within the same time period. An 
analysis of the FAA toxicological accident records database showed that, for the 10-year period 
from 2007 to 2016, 3.4% of analyzed aviation accident fatalities tested positive for either THC or 
its main secondary metabolite in at least one tissue or bodily fluid (such as urine, vitreous humor, 
blood, etc.) (Norris et al., 2018). Furthermore, this number was consistent with the previous 
reporting period from 1996 to 2007. The impact of THC consumption on transportation is not 
limited solely to aviation; the National Roadside Surveys, conducted by the National Highway 
Transportation Safety Administration for 2007 (the first year data was collected on THC 
prevalence) and 2013-2014 (the final year of data) showed an increase in surveyed drivers testing 
positive for THC, rising from 8.6% in 2007 to 12.6% in 2013-2014 (Compton, 2017).  

Genes that change in expression following THC consumption may be useful as molecular 
biomarkers, and if correlated with measures of THC-related cognitive impairment, may assist in 
the determination of aviation accident causation. To this end, the GEN team has previously 
studied ribonucleic acid (RNA) extracted from postmortem blood and tissue samples collected 
from NTSB-investigated general aviation fatalities at the time of autopsy (Burian et al., 2017). 
That study found RNA extracted from aviation accident victims to be highly variable and total 
RNA yields for some samples to be much greater than expected, suggesting microbial 
contamination. RNA Integrity Number (RIN) values, a 1-10 scale measure of RNA sample 
quality, were significantly lower in samples collected from victims who experienced moderate to 
high levels of trauma versus low-trauma victims. Additionally, the presence of prokaryotic rRNA 
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peaks on the RIN traces was positively correlated with postmortem interval (PMI), while 
eukaryotic rRNA were negatively correlated with PMI, suggesting the incidence of microbial 
contamination has a direct relationship with the amount of lag between time of death and time of 
autopsy. Relative gene expression patterns were determined using a panel of 35 genes for 
available tissues and blood from postmortem sources and blood from living individuals; 
significant correlations between living and postmortem sources were seen in brain, lung, skeletal 
muscle, and blood, suggesting that postmortem expression patterns in those tissues are most 
similar to those of live tissue. However, other studies in animal models of brain and in human 
blood demonstrate that postmortem changes in gene expression, on a gene-by-gene and 
transcriptome-wide basis using quantitative reverse-transcriptase polymerase chain reaction 
(qPCR) and RNA sequencing (RNA-Seq), can occur following death (Halawa et al., 2021, 
Antiga et al., 2021). While gene expression can be measured on autopsy-derived and postmortem 
specimens using qPCR methods, the usefulness of such specimens for high-throughput RNA-seq 
based gene expression analysis was unclear. 

This study was conducted to determine if aviation accident autopsy samples can be used 
reliably for RNA-seq and if differences in gene expression are detectable between samples 
grouped by the presence of absence of THC. Each of those questions were answered 
affirmatively, although the gene expression differences noted may have been attributable to 
smoking and not to THC itself. This work also describes methods and procedures suitable for 
conducting gene expression analysis on low-quality or partially degraded specimens, what results 
might be expected from those analyses, and may provide guidance to those considering such 
efforts.    

2. Methods 
Institutional Review Board and Waver of Consent 

All research was conducted with the approval of the FAA Institutional Review Board. A 
waiver of consent exists for specimens collected from fatal aviation accident victims, as a human 
subject, as defined by 49 C.F.R. §11.102(e)(1)(i), is “a living individual about whom an 
investigator conducting research obtains [...] biospecimens through [...] interaction with the 
individual, and [...] analyzes [...] the biospecimens.” As research samples for this study were 
only collected from deceased individuals, individual or familial consent was not required for 
sample collection. All personally identifiable information was removed from these samples, and 
RNA-Seq data are deposited in the limited-access Database of Genotypes and Phenotypes. 

Sample Collection 

The TOX team assessed forensic tissue samples for the presence of delta-9-THC or its 
primary or secondary metabolites, 11-hydroxy-delta-9-THC and 11-nor-9-carboxy-delta-9-THC. 
Samples that tested positive for any of these compounds were categorized as “THC-positive” and 
THC-negative control samples were then flagged for sampling and inclusion in this study by the 
FAA/CAMI Quality Assurance (QA) team. Tissue samples were allowed to thaw at room 
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temperature for approximately 1 hour before tissue sampling by GEN team personnel. Brain, 
lung, and muscle tissues, including psoas and other muscles collected during autopsies, were 
obtained using punches measuring 3 mm and 6 mm in diameter. The selection of brain regions 
was based on the discretion of individual medical examiners, and tissue collection from each 
subject was contingent upon availability. Samples were collected using Biopunches (Ted Pella, 
Inc., 15111-30, 15111-60), and placed into tubes containing RNAlater Stabilization Solution 
(ThermoFisher Scientific, AM7021). Blood was originally collected at the time of autopsy in 
Vacutainer Sodium Fluoride/Potassium Oxalate 100 mg/20 mg tubes (BD Biosciences, 367001) 
for toxicological analysis. When available, two aliquots of approximately 1 mL of this preserved 
blood were collected from each subject. Blood samples were then stored in a -80°C freezer. 

RNA Extraction 

Tissue samples were homogenized using a TissueLyser II bead mill (QIAGEN, 85300) 
using the Adapter Set 2 x 24 and 5-mm stainless steel beads (QIAGEN, 69989) in QIAzol Lysis 
Reagent (brain) or Buffer RLT (lung and muscle). RNA was isolated from the homogenized 
tissue samples using either the RNeasy Lipid Tissue Mini kit (QIAGEN, 74804) for brain 
samples or the RNeasy Fibrous Tissue Mini kit (QIAGEN, 74704) for lung and muscle samples. 
On-column DNase I treatment was performed for all tissue extractions using the RNase-Free 
DNase Set (QIAGEN, 79254). RNA was isolated from whole blood samples using the Quick-
RNA Whole Blood kit and treated with on-column DNase I (Zymo Research, R1201). RNA was 
analyzed for purity and yield using a NanoDrop 2000c spectrophotometer (ThermoFisher 
Scientific, ND-2000c) and a Qubit 3.0 fluorometer (ThermoFisher Scientific, Q33216) using the 
Broad Range Assay kit (ThermoFisher Scientific, Q10210). RINs were calculated using a 4200 
TapeStation system (Agilent, G2991BA) and RNA ScreenTape tapes and reagents (Agilent, 
5067-5576, 5067-5578, 5067-5577).  

RNA-Seq cDNA Synthesis, Library Preparation, and Sequencing 

Samples with sufficient concentration for sequencing (in general, at least 50-80 ng/µL 
when possible, although several blood samples had concentrations in the 30-40 ng/µL range, and 
one blood sample had a concentration of 13.8 ng/µL), were diluted in RNase-free water: if the 
sample concentration was >80 ng/µL, it was diluted to 80 ng/µL; if the sample concentration was 
<80 ng/µL but >50 ng/µL, it was diluted to 50 ng/µL; if the sample concentration was <50 
ng/µL, it was not diluted. Samples then were shipped on dry ice to the Baylor College of 
Medicine Human Genome Sequencing Center (HGSC) for library preparation and sequencing. 
At the HGSC, RNA quality was assessed using a Fragment Analyzer 5300 (Agilent, M5311AA) 
and RNA Kit (15NT) reagents (Agilent, DNA-471-0500). Samples were randomly re-arrayed to 
minimize potential batch effects and spiked with ERCC synthetic RNA (ThermoFisher 
Scientific, 4456740). Libraries were prepared using the TruSeq Stranded Total RNA with Ribo-
Zero Globin kit (Illumina Inc., 20020612) following the manufacturer’s protocol (Illumina Inc., 
RS-122-9007DOC, Part # 15031048 Rev. E, October 2013). Ribosomal RNA/Globin-depleted 
RNA samples were purified using Agencourt RNAClean XP beads (Beckman Coulter, A63987) 
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and then used for first and second-strand cDNA synthesis. The cDNA was A-tailed and ligated 
with the TruSeq UD Indexes V2 (Illumina Inc., 20042113), PCR-amplified using the Illumina 
Primer Cocktail Mix, and then purified using AMPure XP beads (Beckman Coulter, A63882). 
Libraries were quantified using the Fragment Analyzer 5300, pooled in equimolar ratios, and 
then the pools were qPCR quantified. Libraries were sequenced on the Illumina NovaSeq 6000 
platform using 2x150 bp paired-end reads to generate a target of 100 million reads per sample. 

RNA-Seq Analysis Pipeline 

Full alignment and quality control pipeline code, including individual software 
parameters and flags, is described in the Supplementary Material (supplemental_file_1). The 
pipeline was performed on a workstation running Red Hat Enterprise Linux 8. After each step of 
the pipeline, MultiQC (v1.14; Ewels et al., 2016) was used to generate html summary reports to 
collate the results generated by each program. Quality assessment of the raw gzipped fastq files 
was performed using FASTQC (v0.12.1; Andrews, 2010). The raw reads were trimmed of 
adapters and quality filtered using CutAdapt (v4.3; Martin, 2011). Quality assessment via 
FASTQC of the trimmed and filtered reads was performed a second time to assess the trimming 
and filtering. The trimmed and filtered reads were aligned to the ENCODE human reference 
genome primary assembly (GRCh38.p13, Release 43, indexed with a 149 bp sjdb overhang) and 
primary assembly comprehensive gene annotation (in GTF format), using STAR (v2.7.10.b; 
Dobin et al., 2013), generating Aligned.sortedByCoord.out.bam files and paired 
Unmapped.out.mate files consisting of all unmapped reads. BAM index files were generated 
using samtools (v1.17; Li et al., 2009). Post-alignment quality control on the 
Aligned.sortedByCoord.out.bam files was performed using Qualimap (v2.2.2d; García-Alcalde 
et al., 2012). Feature count matrices were generated using the featureCounts function of SubRead 
(v2.0.4; Liao et al., 2014). GNU Parallel was used to combine individual feature count matrices 
into a single matrix (Tange, 2018). Microbial contaminant investigation of the unmapped reads 
was performed using a pipeline consisting of Kraken (v1.1.1; Wood & Salzberg, 2014), Kraken2 
(v2.1.2; Wood et al., 2019), Bracken (v2.8; Lu et al., 2017), and Krona (v2.8.1; Ondov et al., 
2011) using the PlusPF index collection (retrieved 2023-03-21). Kraken2 output files were 
collated by species using the kraken-multiple-taxa.py script (Papudeshi, 2022). 

Differential Gene Expression Analysis 

Full analysis code is described in the Supplementary Material (supplemental_file_2). 
Differential gene expression analysis was performed using R Statistical Software (v4.3.0; R Core 
Team, 2023) in conjunction with RStudio (build 446; Posit Team, 2023). The analysis code is 
adapted from, in part, training material from the Harvard Chan Bioinformatics Core Differential 
Gene Expression workshop (Mistry et al., 2021). The following packages in R were called 
directly to perform these analyses and prepare figures and tables for publication: DESeq2 
(v.1.40.1; Love et al., 2014), tidyverse (v2.0.0; Wickham et al., 2019), GeneStructureTools 
(v1.20.0; Signal, 2023), limma (v3.56.1; Ritchie et al., 2015), ggplot2 (v3.4.2; Wickham, 2016), 
pheatmap (v1.0.12; Kolde, 2019); apeglm (v1.22.1; Zhu et al., 2019), ggrepel (v0.9.3; 



5 
 

Slowikowski, 2023), DEGreport (v1.36.0; Pantano, 2023), AnnotationHub (v3.8.0; Morgan & 
Shepherd, 2023), ensembldb (v2.21.0; Rainer et al., 2019), annotables (v0.2.0; Turner, 2023), 
pals (v1.7; Wright, 2021), patchwork (v1.1.2; Pedersen, 2022), ggpubr (v0.6.0; Kassambara, 
2023), scales (v1.2.1; Wickham & Seidel, 2022), ggiraphExtra (v0.3.0; Moon, 2020), flextable 
(v0.9.2; Gohel & Skintzos, 2023a), ggiraph (v0.8.7; Gohel & Skintzos, 2023b), officer (v0.6.2; 
Gohel, 2023), and magrittr (v2.0.3; Bache & Wickham, 2022). 

The dataset was sorted by tissue and then each tissue subset was analyzed using the 
DESeq2 package with the design parameter “design=~ THC”. Log fold change shrinkage was 
performed using the apeglm package and the coefficient “THC_positive_vs_negative.” A false 
discovery rate (FDR)-adjusted P-value significance threshold of 0.1 and a log2 fold change 
threshold of 0.58, corresponding to a fold change of approximately 1.5, were used as filters. 
Significant differentially expressed genes were annotated with Entrez ID information.  

Microbial Contaminant Analysis 

Full analysis code is described in the Supplementary Material (supplemental_file_9). 
Analysis was performed using R Statistical Software in conjunction with RStudio. To examine 
the extent of microbial contamination present within the postmortem samples used in this study, 
microbial contaminant analysis was performed on the paired Unmapped.out.mate files generated 
as part of the RNA sequencing alignment pipeline (i.e., reads that were not mapped to the human 
genome index during read alignment). Sequence reads homologous to Homo sapiens were 
filtered out (i.e., reads that were otherwise excluded during alignment for mapping to too many 
loci, for being too short, or for other mapping-related reasons), then summed across the 
remaining species for each sample and then across each sample for each tissue. The total number 
of reads (microbial contamination plus uniquely mapped reads) for each tissue was calculated 
and used to determine the percent microbial contamination for each of the four tissues. The 
following packages in R were called directly to perform this analysis and prepare figures for 
publication: tidyverse, ggplot2, scales, pals, ggrepel, and patchwork. 

3. Results 
Aviation Accident Postmortem Samples 

RNA was extracted from postmortem brain, lung, muscle, and blood samples from 57 
fatal general aviation accident victims, depending on tissue and blood availability. Not every 
tissue was available/collected from every subject at the time of autopsy, and in some cases, 
individual samples were so degraded that it was impossible to isolate RNA. Therefore, the actual 
number of samples extracted differs from tissue to tissue: 53 brain samples (28 THC-negative 
and 25 THC-positive), 52 lung samples (27 THC-negative and 25 THC-positive), 53 muscle 
samples (26 THC-negative and 27 THC-positive), and 43 blood samples (22 THC-negative and 
21 THC-positive).  

Following RNA extraction, RNA quality and quantity was assessed (Table 1). Mean 
sample concentration was highly variable, with brain samples having the highest RNA 
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concentrations, followed by muscle, blood, and lung (Fig. 1A). The first standard deviation 
values for mean concentration for all samples were quite large, but especially for the blood 
samples (Table 1 “Concentration” and Fig. 1A). Mean RIN values varied across tissues, but 
uniformly indicated moderate to high RNA degradation. Blood samples demonstrated the lowest 
values, indicating the most degradation and muscle the highest, and each sample type displayed a 
high degree of inter-subject variability (Fig. 1B). The mean 260/280 nm and 260/230 nm 
absorbance ratios, measures of nucleic acid purity and level of organic compound contamination 
respectively, were approximately 2.0 and between 2.0 and 2.2, respectively, indicating that RNA 
extraction methods used in this study yielded pure RNA without significant contamination by 
organic compounds (Fig. 1C and 1D). In most comparisons, blood-extracted RNA demonstrated 
the lowest and most variable metric in each measurement. While the RNA extracted from these 
samples was more degraded than is generally desirable for RNA-Seq, sample concentrations and 
purity were within the range expected of spectrophotometrically pure RNA, and samples were 
used for RNA-Seq.    
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Table 1. RNA extraction metrics from postmortem tissue samples. Mean values ± 1 standard deviation for the 
RNA extraction metrics sample concentration (ng/µL), RIN value, 260/280 nm absorbance ratio, and 260/230 nm 
absorbance ratio for blood (N=43), brain (N=53), lung (N=52), and muscle (N=53) samples.  

Note. RIN = RNA Integrity Number. 

Tissue Concentration RIN A260/280 
Ratio 

A260/230 
Ratio 

Brain 506.8±457.3 4.2±1.0 2.07±0.03 2.16±0.14 

Lung 164.4±154.6 3.9±1.4 2.09±0.03 2.13±0.12 

Muscle 319.5±178.8 5.0±1.5 2.08±0.02 2.13±0.10 

Blood 242.3±346.6 3.1±1.2 1.99±0.09 2.10±0.22 
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Figure 1. RNA extraction metrics. Boxplots of extracted RNA sample concentration (A), RIN values (B), 260/280 
nm absorbance ratio (C), and 260/230 nm absorbance ratio (D) for each of the four tissues.  

Note. RIN = RNA Integrity Number. 
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Differential Gene Expression Analysis 

Total RNA sequencing data (2x150 paired-end) were generated from the RNA extracted 
from each sample. Principal component analysis (PCA) performed on rlog transformed counts 
within sample types indicated separation largely by a single component for brain, muscle, and 
blood, with no clustering based on THC presence or absence. The brain and lung population 
contained a single THC-positive sample that strongly segregates along PC2, while the remaining 
THC-positive and THC-negative samples cluster across PC1 (Fig. 2A and 2B). Similarly, muscle 
and blood samples do not show segregation on the basis of THC status, with samples clustering 
along PC1 and PC2 irrespective of THC (Fig. 2C and 2D). 

Differential gene expression analysis was performed to determine if significant gene 
expression changes were associated with the presence of THC. The comparison regarded THC-
negative samples as negative values; therefore, positive log2FoldChange measures indicate 
higher expression in THC-positive samples (upregulation), and negative values signify lower 
expression in THC-positive samples (downregulation). No significant differentially expressed 
genes (DEGs) were observed in brain or blood samples for the THC-positive vs THC-negative 
comparison (Fig. 3A and 3D). A total of 22 DEGs were observed in lung samples, with 20 genes 
showing upregulation and two genes showing downregulation (Fig. 3B). In muscle, four DEGs 
were observed, with three genes showing upregulation and one gene showing downregulation 
(Fig. 3C). These 22 and four significant DEGs were plotted by log10 normalized counts (Fig. 4), 
demonstrating imperfect separation of gene expression measurements between THC-positive and 
THC-negative samples even in differentially expressed genes. The DEGs were also annotated by 
Entrez gene ID, reducing the number of DEGs with available annotations to 18 for lung (Table 
2) and remaining at four for muscle (Table 3). 
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Figure 2. Principal component analysis. PCA was performed using DESeq2’s plotPCA function on normalized, 
regularized log transformed counts. Samples do not noticeably cluster by THC status for any of the four tissues: 
brain (A), lung (B), muscle (C), or blood (D). 

Note. THC = Tetrahydrocannabinol. 
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Figure 3. MA plots of significant THC-positive vs THC-negative DEGs. MA plots for THC-positive vs THC-
negative comparisons for brain (A), lung (B), muscle (C), and blood (D). The horizontal dashed lines represent the 
positive and negative 0.58 log2 fold change thresholds, and the red dots and blue dots represent significant 
differentially expressed up-regulated and down-regulated genes, respectively, with an FDR-adjusted P value 
threshold of 0.05. No significant DEGs were identified in brain and blood.  

Note. THC = tetrahydrocannabinol; DEG = differentially expressed gene; FDR = false discovery rate. 
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Figure 4. Significant THC-positive vs THC-negative DEGs. The normalized counts of the significant DEGs 
arranged from left to right by Ensembl ID number: lung (A) and muscle (B).  

Note. THC = tetrahydrocannabinol; DEG = differentially expressed gene. 
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Table 2. Significant lung DEGs. Entrez annotated differentially expressed genes identified in THC-positive vs THC-negative lung samples using an FDR-
adjusted P value (padj) significance threshold of 0.1 and a log2 fold change (log2FoldChange) threshold of 0.58.  

Note. THC = tetrahydrocannabinol; FDR = false discovery rate. 

Gene Entrez Symbol baseMean log2FoldChange lfcSE pvalue padj Chr Start End Strand Description 

ENSG00000063438 57491 AHRR 39.680 2.281 0.485 4.47e-08 9.72e-04 5 321,714 438,291 1 aryl hydrocarbon 
receptor repressor 

ENSG00000158164 11013 TMSB15A 21.441 -1.531 0.320 1.08e-07 1.18e-03 X 102,513,682 102,516,739 -1 thymosin beta 15A 
ENSG00000154165 2838 GPR15 17.183 2.215 0.547 9.34e-07 6.78e-03 3 98,531,978 98,534,681 1 G protein-coupled 

receptor 15 
ENSG00000159339 23569 PADI4 55.639 2.098 0.542 2.59e-06 1.12e-02 1 17,308,195 17,364,004 1 peptidyl arginine 

deiminase 4 

ENSG00000173535 8794 TNFRSF10C 37.443 1.353 0.340 2.76e-06 1.12e-02 8 23,102,921 23,117,445 1 TNF receptor 
superfamily member 
10c 

ENSG00000185669 333929 SNAI3 19.078 0.825 0.213 3.59e-06 1.12e-02 16 88,677,688 88,686,507 -1 snail family 
transcriptional 
repressor 3 

ENSG00000205038 93035 PKHD1L1 681.956 1.212 0.310 3.60e-06 1.12e-02 8 109,362,461 109,537,207 1 PKHD1 like 1 
ENSG00000158517 653361 NCF1 71.617 1.249 0.355 1.48e-05 4.03e-02 7 74,774,011 74,789,315 1 neutrophil cytosolic 

factor 1 
ENSG00000165178 654817 NCF1C 33.028 1.238 0.365 2.08e-05 4.52e-02 7 75,156,639 75,172,044 -1 neutrophil cytosolic 

factor 1C pseudogene 
ENSG00000116701 4688 NCF2 532.308 0.762 0.226 2.93e-05 5.11e-02 1 183,554,461 183,590,905 -1 neutrophil cytosolic 

factor 2 

ENSG00000158683 168507 PKD1L1 200.743 1.035 0.314 3.05e-05 5.11e-02 7 47,740,202 47,948,466 -1 polycystin 1 like 1, 
transient receptor 
potential channel 
interacting 

ENSG00000185640 338785 KRT79 16.521 1.525 0.484 3.87e-05 6.01e-02 12 52,821,408 52,834,311 -1 keratin 79 
ENSG00000134955 219855 SLC37A2 113.411 0.694 0.215 4.73e-05 6.86e-02 11 125,063,302 125,090,516 1 solute carrier family 

37 member 2 
ENSG00000102575 54 ACP5 265.403 0.674 0.224 9.04e-05 9.62e-02 19 11,574,653 11,579,993 -1 acid phosphatase 5, 

tartrate resistant 
ENSG00000117115 11240 PADI2 100.079 0.916 0.310 1.03e-04 9.62e-02 1 17,066,761 17,119,451 -1 peptidyl arginine 

deiminase 2 

ENSG00000140465 1543 CYP1A1 308.918 2.439 0.797 7.14e-05 9.62e-02 15 74,719,542 74,725,536 -1 cytochrome P450 
family 1 subfamily A 
member 1 

ENSG00000159399 3099 HK2 499.815 0.722 0.238 8.89e-05 9.62e-02 2 74,834,127 74,893,359 1 hexokinase 2 
ENSG00000167680 10501 SEMA6B 212.123 0.938 0.312 8.34e-05 9.62e-02 19 4,542,593 4,581,776 -1 semaphorin 6B 
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Table 3. Significant muscle DEGs. Entrez annotated differentially expressed genes identified in THC-positive vs THC-negative muscle samples using an FDR-
adjusted P value (padj) significance threshold of 0.1 and a log2 fold change (log2FoldChange) threshold of 0.58. 

 Note. THC = tetrahydrocannabinol; FDR = false discovery rate. 

Gene Entrez Symbol baseMean log2FoldChange lfcSE pvalue padj Chr Start End Strand Description 

ENSG00000140465 1543 CYP1A1 115.075 2.153 0.644 2.50e-20 1.40e-15 15 74,719,542 74,725,536 -1 cytochrome P450 
family 1 subfamily A 
member 1 

ENSG00000124818 221391 OPN5 12.025 -1.740 0.329 4.50e-09 1.26e-04 6 47,781,982 47,832,780 1 opsin 5 
ENSG00000074410 771 CA12 10.452 1.967 0.506 2.97e-06 4.14e-02 15 63,321,378 63,381,846 -1 carbonic anhydrase 12 
ENSG00000163435 1999 ELF3 7.176 2.085 0.533 2.58e-06 4.14e-02 1 202,007,945 202,017,183 1 E74 like ETS 

transcription factor 3 
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Microbial Contaminant Analysis 

The brain samples had the lowest percent microbial contamination at 2.18% of total reads 
originating from exogenous contamination (Fig. 5A), followed by muscle at 5.52% (Fig. 7A), 
lung at 9.55% (Fig. 6A), and blood at 13.23% (Fig. 8A). The top five most prevalent microbial 
species in each sample were determined. The blood samples showed the greatest microbial 
diversity with 21 microbial species with over 1,000,000 matching reads in an individual sample 
across all blood samples (Fig. 8B), followed by the lung samples with 15 species (Fig. 6B), the 
muscle samples with 14 species (Fig. 7B), and the brain samples with 10 species (Fig. 5B). 
Finally, the number of times a given species appeared in the top five most prevalent microbial 
species per sample across tissues was determined. Across brain, lung, and muscle, Bacillus 
subtilis was the most frequently prevalent species, with Methanocaldococcus sp. FS406-22 most 
frequently prevalent in blood (Fig. 5C, 6C, 7C, and 8C), corresponding to the use of the ERCC 
spike-in prior to RNA-Seq library construction, which derives a proportion of its spike-in 
fragments from Bacillus subtilis and Methanocaldococcus jannaschii genomes (Jiang et al., 
2011).  
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Figure 5. Brain microbial contaminant analysis. (A) Stacked column plot of uniquely mapped human RNA-Seq 
reads and reads associated with microbial contaminants per sample. (B) Stacked column plot of the top five most 
prevalent microbial species in each sample. The species with read counts >1,000,000 in individual samples are 
colored according to the legend. (C) Column plot representing the number of samples for which each species 
appeared in the top five most prevalent microbial species for each sample.  



17 
 

 

Figure 6. Lung microbial contaminant analysis. (A) Stacked column plot of uniquely mapped human RNA-Seq 
reads and reads associated with microbial contaminants per sample. (B) Stacked column plot of the top five most 
prevalent microbial species in each sample. The species with read counts >1,000,000 in individual samples are 
colored according to the legend. (C) Column plot representing the number of samples for which each species 
appeared in the top five most prevalent microbial species for each sample.  
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Figure 7. Muscle microbial contaminant analysis. (A) Stacked column plot of uniquely mapped human RNA-Seq 
reads and reads associated with microbial contaminants per sample. (B) Stacked column plot of the top five most 
prevalent microbial species in each sample. The species with read counts >1,000,000 in individual samples are 
colored according to the legend. (C) Column plot representing the number of samples for which each species 
appeared in the top five most prevalent microbial species for each sample. 
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Figure 8. Blood microbial contaminant analysis. (A) Stacked column plot of uniquely mapped human RNA-Seq 
reads and reads associated with microbial contaminants per sample. (B) Stacked column plot of the top five most 
prevalent microbial species in each sample. The species with read counts >1,000,000 in individual samples are 
colored according to the legend. (C) Column plot representing the number of samples for which each species 
appeared in the top five most prevalent microbial species for each sample. 
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4. Discussion 
RNA Quality 

The RNA extracted from postmortem brain, lung, muscle, and blood samples collected 
from fatal general aviation accident victims is, in general, of poor quality in comparison to RNA 
extracted from samples collected using best practices. Under ideal circumstances, tissue samples 
are collected immediately after death, flash frozen in liquid nitrogen, stored on dry ice, or placed 
into one of several commercial DNA/RNA stabilization/preservation reagents, and then 
immediately placed into an ultra-low (-80°C) temperature freezer for storage until RNA is 
extracted (Auer et al., 2014; QIAGEN, 2023). In some cases, stabilization reagents allow for 
samples to be kept for a period at room temperature. Otherwise, at all times during sample 
collection, handling, and up until extraction, great care is taken to prevent the tissue samples 
from thawing by working quickly and transporting intact tissue samples on dry ice whenever 
outside of an ultra-low temperature freezer; deviations from these practices may result in RNA 
degradation and a marked decrease in RIN. In contrast, tissue samples collected for analysis in 
this study were exposed to adverse conditions at all stages during the collection process. The 
subject population experienced, by definition, violent and/or catastrophic injury leading to or 
following death, and in some cases experienced post-crash fire, or remained for hours or days at 
ambient temperature and weather conditions. Remains were transported to and sampled at a 
Medical Examiner or Coroner’s office from one to several days following refrigeration. 
Following autopsy, tissues may or may not have been frozen and sent via parcel service from 
across the United States with or without ice packs in insulated Styrofoam shipping containers to 
the FAA/CAMI facility in Oklahoma City, OK. The QA team then inventoried and accessioned 
the specimens and stored them in a freezer (-20°C). After toxicological evaluation by the TOX 
team (turnaround time for which is up to 30 days for cannabinoid-negative samples and up to 60 
days for cannabinoid-positive samples, during which time the tissues remained in storage at -
20°C), the GEN team collected samples as they were available for this study. Tissues were 
thawed at room temperature, biopsied and then placed into DNA/RNA stabilization reagent 
before finally being stored in ultra-low (-80°C) temperature freezers.  

Storing mammalian whole blood samples at 4°C for as little as 16 hours has been seen to 
significantly decrease the integrity of RNA such that it is no longer considered high-quality (a 
RIN value of >8) but is still usable in gene expression array analyses (a RIN value between 6 and 
7) and after as few as three days at 4°C is considered degraded (a RIN value of <3) (Song & 
Zhou, 2020). The blood samples analyzed in this study were originally collected in Vacutainer 
Sodium Fluoride/Potassium Oxalate tubes for use in toxicological analysis, not with the intention 
of preserving and stabilizing RNA. Such tubes exist, for example the BD PAXgene Blood RNA 
Tube, and had these tubes been utilized for blood collection, the quality of the extracted RNA 
would likely have been higher. Decreasing RIN values of RNA extracted from human 
postmortem tissues has been correlated with increasing PMI in a clinical setting, but the extent of 
the degradation and the period over which it occurs is tissue-dependent (Walker et al., 2016). 
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Therefore, it is unsurprising that the RNA extracted from tissue samples in the present study was 
of low quality. However, surprisingly, the samples were not entirely degraded (corresponding to 
a RIN value of 1, or for which a RIN value could not be determined), with a mean RIN value 
across all samples of 4.13±1.44. Any downstream analysis using RNA extracted from aviation 
accident victims should be done with the foreknowledge that samples will be degraded; however, 
the samples in this study were useful for sequencing, albeit with a large degree of expression 
variability.  

Putative Smoking and/or THC Related Biomarkers 

All of the genes identified as significantly differentially expressed in this study in lung 
tissue (Table 2) have previously been identified in the literature as associated in some capacity 
with tobacco and cigarette smoking in lung specimens and blood, respiratory conditions, or 
certain lung-associated cancers and tumors. AHRR is a known epigenetic biomarker of tobacco 
smoking, with the cg05575921 CpG residue showing significant differential methylation in DNA 
extracted from whole blood (Zeilinger et al., 2013; Andersen et al., 2015). Persistent 
downregulation of TMSB15A has been implicated in chronic obstructive pulmonary disease 
progression (Samaha et al., 2021). Increased GPR15 expression and methylation at the GPR15 
ch19859270 CpG occurs in helper T cells in response to both tobacco and cannabis smoking 
(Andersen et al., 2020; Bauer, 2021; Andersen et al., 2021). Increased, but not significant, 
PADI4 expression has been observed in bronchoalveolar lavage cells in smokers relative to non-
smokers (Makrygiannakis et al., 2008). The TNFRSF10C promoter is methylated in primary lung 
adenocarcinomas from nonsmokers compared to current and former smokers (Tessema et al., 
2009). Increased SNAI3 expression has been observed in lung adenocarcinomas, squamous cell 
carcinomas, and large cell NE carcinomas from smokers (Prieto et al., 2017). PKHD1L1 has 
been identified as a putative prognostic biomarker between non-smoking and smoking-associated 
lung adenocarcinomas (Zhou et al., 2019). Some evidence exists that suggests NCF1 may be 
regulated by polycyclic aromatic hydrocarbons, such as those found in cigarette smoke, while 
NCF1C is a NCF1 pseudogene with no known function (Pinel-Marie et al., 2009; Zhong et al., 
2018). NCF2 has been implicated in several relevant cancers, including esophageal squamous 
cell carcinoma and non-small cell lung cancer, and its expression may be upregulated by 
smoking (Qin et al., 2020; Yang et al., 2021; Zhou et al., 2021). A single nucleotide 
polymorphism within PKD1L1 has been identified within a genome-wide association study for 
overlap of asthma and obstructive pulmonary disease in African Americans (Hardin et al., 2014). 
KRT79 was identified amongst a panel of genes whose expression was downregulated in 
peripheral blood following smoking cessation but was seen to be upregulated in THC-positive 
lung tissues in this study (Ungaro et al., 2016). In bronchoalveolar lavage cells, a differentially 
methylated position within SLC37A2 has been identified in smokers versus non-smokers (Ringh 
et al., 2019). ACP5 expression has been seen to be induced by cigarette smoke in lung specimens 
of self-reported smokers (Morissette et al., 2014). Significantly increased expression of PADI2 
has been observed in the bronchoalveolar lavage cells of smokers (Makrygiannakis et al., 2008). 
CYP1A1 has long been known to be induced in response to cigarette smoke, and the encoded 
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protein of CYP1A1, a cytochrome P450 superfamily member, is integral to the metabolic 
activation of polycyclic aromatic hydrocarbons (Nebert, 1991; Slattery et al., 2004). HK2 and its 
gene product hexokinase 2 regulate AHR (aryl hydrocarbon receptor) signaling, the transcription 
of which is further affected by halogenated aromatic hydrocarbon compounds, polycyclic 
aromatic hydrocarbons, and tryptophan derivatives; HK2 over-expression has been linked to 
tumor growth (Watzky et al., 2022). SEMA6B expression has previously been identified as 
having a dose-response relationship with daily smoked cigarettes and total smoked pack years 
(Cuppen et al., 2018). 

In muscle tissue, several novel genes were identified as being differentially expressed 
(Table 3), alongside CYP1A1, which was also found to be differentially expressed in lung tissue. 
OPN5 does not appear to have been previously associated with smoking, cannabis, or THC. 
Similarly, there is no evidence linking CA12 with either cannabis or THC. There is little research 
linking CA12 expression with smoking, aside from CA12 being associated with several cancers, 
including esophageal squamous cell carcinoma and oral squamous cell carcinoma, for both of 
which smoking is considered a risk factor (Cheong et al., 2009; Xing & Liu, 2017). ELF3 has 
been found to be differentially expressed in squamous cell cancers and adenocarcinomas of 
smokers, and its overexpression has also been identified in non-small cell lung cancer, regardless 
of smoker status (Woenckhaus et al., 2006; Wang et al., 2018). 

Postmortem Contaminant in Accident Samples 

Given the nature of the postmortem accident samples, the extent of microbial 
contamination present in the samples is unsurprising. The relative lack of contamination present 
in the brain samples is understandable, given the position of the brain relative to the other three 
tissues. Short of physical penetration of the skull resulting in exposure of the brain to exterior 
elements or some other particularly adverse conditions such as a long postmortem interval 
allowing for putrefaction to begin, it is expected that the brain would be relatively free of 
microbial contamination. Similarly, the muscle samples used in this study were primarily 
collected from the psoas muscle, a paraspinal muscle located in the lumbar region of the trunk. 
Again, short of severe injury to this region leading to its exposure to the outside air or becoming 
punctured by debris during the accident, it is expected that this muscle should remain intact and, 
therefore, relatively uncontaminated prior to putrefaction. Healthy human lung has a pre-existing 
microbiome antemortem, with microbes from Firmicutes, Bacteroidetes, Proteobacteria, 
Fusobacteria, and Actinobacteria present under normal circumstances (Moffatt & Cookson, 
2017). Further, the lungs have been thought to decompose more quickly relative to muscles, 
which are amongst the last tissues to decompose, alongside tendons and bones (Javan et al., 
2019; Dash & Das, 2020). Finally, postmortem blood showed the highest degree of 
contamination, yet multiple samples had very low microbial counts, which is in keeping with an 
artifactual disparity in blood collection sites. Depending on the state of the decedent, a peripheral 
blood sample from the femoral vein is preferred; however, in cases of severe trauma, the 
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subclavian or jugular veins may be used. If peripheral blood is unavailable, cardiac blood can be 
collected, though it is at risk of putrefaction. 

Additionally, cavity blood may also be sampled, but is generally contaminated by the 
rupture of the gut, urine, or decomposing bodily fluids (Beresford, 2023). While the extent of 
microbial contamination from subject to subject and from tissue to tissue varies, no sample from 
any of the subjects for any of the four tissues collected for this study was free of contaminants. 
Given the nature of these samples and the realities associated with aviation accidents and 
autopsy, microbial contamination, and, in some cases, extensive contamination, of postmortem 
samples is unavoidable and should be expected for any studies utilizing these samples in the 
future. 

5. Conclusions 
In this study, THC-positive and THC-negative control brain, lung, muscle, and blood 

samples were collected from fatal general aviation accident victims, RNA was extracted and 
sequenced using RNA-Seq, and then differential gene expression and microbial contamination 
analyzed. RNA quality across all tissues, as assessed by RIN value, was generally poor, falling 
considerably below the field-accepted standard for RNA-Seq (RIN>7.0). While this or even 
more severe degradation could be anticipated in light of the less-than-ideal sample preservation 
approach, this study supports prior work by the GEN team that postmortem aviation accident 
samples can yield viable molecular insights. Several of the samples collected for use in this study 
were putrefied at the time of sampling, as noted by the GEN team, and yet RNA was extracted 
from all. In light of this, we expect that RNA extracted from most aviation accident samples will 
be suitable for RNA-Seq.  

Many samples were also heavily contaminated with microbial RNA. While the 
contamination itself is concerning from a sample-handling perspective, the alignment process of 
RNA-Seq filters these microbial RNA reads from the uniquely mapped human RNA read counts 
that are used for downstream differential gene expression analysis. Therefore, the main practical 
concern related to this contamination is that the microbial RNA subtracts from the total number 
of useful reads for a given sample. Also, if a given gene of interest is highly conserved across 
taxa, it is possible that sequence similarity could result in some mapping errors and inflate the 
counts of some genes by adding microbial to human transcripts. Unless a method of depleting 
microbial RNA prior to library preparation is developed or targeted analyses for human-specific 
expression are employed, postmortem samples should be sequenced at read depths sufficient to 
capture a global view of gene expression despite any microbial contamination (the present study 
targeted 100 million reads per sample). Despite their limitations, postmortem samples represent a 
unique resource for future studies, as long the proper caveats related to their handling are 
acknowledged and accounted for in experimental design. 

No significant differentially expressed genes were identified for the THC-positive vs. 
THC-negative comparison in brain or blood samples. A number of such genes were identified, 
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however, in lung and muscle samples. Furthermore, the majority of these genes have been 
previously associated in the literature with smoking or respiratory system health in some 
capacity. These genes may represent putative biomarkers of THC consumption, though not of 
active impairment resulting from THC use, and it is unclear whether these genes will be useful in 
detecting THC use or simply smoking in general. Future studies are necessary to identify and 
correlate genetic biomarkers of THC consumption with cognitive impairment. This study lays 
the groundwork for how such biomarkers could be identified in practice to identify THC-related 
cognitive impairment as a contributing factor in fatal aviation accidents within the United States.  
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Supplementary Files 

Alignment 

• supplemental_file_1_FAA_GEN_alignment_pipeline_gencode_v1.2_PM.sh; alignment 
and quality control pipeline code in the form of a bash script 

Differential Gene Expression Analysis 

• supplemental_file_2_gencode_PM_DESeq2_analysis_untrimmed.Rmd; R Markdown 
document containing the full DGEA code, supplemental files 3-8 are required  

• supplemental_file_2_gencode_PM_DESeq2_analysis_untrimmed.nb.html; html 
accessible notebook of the above R Markdown document 

• supplemental_file_3_metadata_untrimmed.csv; tissue and THC classification for all 
samples along with RNA extraction metrics 

• supplemental_file_4_metadata_PB_untrimmed.csv; tissue and THC classification for PB 
samples only 

• supplemental_file_5_metadata_PL_untrimmed.csv; tissue and THC classification for PL 
samples only 

• supplemental_file_6_metadata_PM_untrimmed.csv; tissue and THC classification for 
PM samples only 

• supplemental_file_7_metadata_PS_untrimmed.csv; tissue and THC classification for PS 
samples only 
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• supplemental_file_8_PM_gencode_featurecounts.Rmatrix.txt; matrix containing 
featurecounts data for all samples 

Microbial Contaminant Analysis 

• supplemental_file_9_PM_taxonomy_plots.Rmd; R Markdown document containing the 
full taxonomy analysis code, supplemental files 10-14 are required 

• supplemental_file_9_PM_taxonomy_plots.nb.html; html accessible notebook of the 
above R Markdown document 

• supplemental_file_10_gencode_PB_species_kraken_summary; species level kraken 
results summary for PB samples 

• supplemental_file_11_gencode_PL_species_kraken_summary; species level kraken 
results summary for PL samples 

• supplemental_file_12_gencode_PM_species_kraken_summary; species level kraken 
results summary for PM samples 

• supplemental_file_13_gencode_PS_species_kraken_summary; species level kraken 
results summary for PS samples 

• supplemental_file_14_star_alignment_plot.tsv; alignment read counts for all samples 
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